Python 3.6 adds New secrets Module for Robust Account and Password Security

python-ev.png

Python 3.6, the newest major release of the Python language, has added a new module, called secrets, to help generate cryptographically strong random numbers for managing secrets, like account authentication, tokens and related secrets. Python developers are highly likely to prefer secrets over the default pseudo-random number generator in the random module, since it’s not meant for cryptography or security, but modelling and simulation.

Let’s understand with an example how one can create their own cryptographically strong pseudo-random values and generate tokens using the secrets module.

How to create Cryptographically Strong Pseudo-Random Values using secrets

>>> import secrets
>>> import string
>>> characters = string.ascii_letters + string.digits
>>> secure_password = ''.join(secrets.choice(chNo Records.aracters) for i in range(10))
>>> secure_password
'SRvM54ZAs1'

The first step is to import the secrets and the string modules. Then we create a string of uppercase letters and integers. Now, in order to choose characters randomly to generate a secure password, we need to use the secrets module’s choice() method. The reason it’s being called a secure password is because there’s been a use of mixed case, numbers and symbols in the password, which is highly advised to people to keep their passwords protected from hack attacks.

How to Generate Tokens using secrets

There is not one but several methods to generate tokens using the secrets module. Below are mentioned some examples to ease your learning on token generation using secrets.

>>>: secrets.token_bytes()
b'\xd1Od\xe0\xe4\xf8Rn\xf4G\xdb\x08\xa8\x85\xeb\xba>\x8cO\xa7XV\x1cb\xd6\x11\xa0\xcaK'

>>> secrets.token_bytes(8)
b'\xfc,9y\xbe]\x0e\xfb'

>>> secrets.token_hex(16)
'6cf3baf51c12ebfcbe26d08b6bbe1ac0'

>>> secrets.token_urlsafe(16)
'5t_jLGlV8yp2Q5tolvBesQ'

The token_bytes function here allows to return a random byte string containing nbytes number of bytes. A reasonable default could also be put into use when nbytes is None or not supplied. In the first example, there is no mention of number of bytes, hence Python itself choose a reasonable number there. The token-bytes function was used again, but this time with 8 bytes. The next function used was token_hex, to return a random text string, in hexadecimal. The token_urlsafe function is the last one used there, meant to return a random URL-safe text string. Base64 encoding was also used for text.

Click here to unveil 7 Python libraries to use in 2017

How Many Bytes to Use for Tokens?

You should have sufficient randomness for your tokens to secure them against brute-force attacks. It’s advised that at least 32 bytes (256 bits) of randomness should be used to protect tokens from security breaches.

The Python developer community will see the secrets module as an important addition to Python 3.6. With secrets, Python 3.6 developers now have a reliable way to generate cryptographically strong tokens and passwords.

What’s your view on addition of secrets to Python 3.6? Would you like to give the secrets module a try for generating tokens and passwords? Please share your views in the comment box below.

Source 1: http://www.blog.pythonlibrary.org/

Source 2: https://docs.python.org 


Why to Use HTML5 and CSS3 for Your Business?
Why Do Developers Now Compare Vue.js to JavaScript...

Comments

 
No comments yet
Already Registered? Login Here
Guest
Wednesday, 17 September 2025
If you'd like to register, please fill in the username, password and name fields.

SEARCH BLOG

ARCHIVES

development Salesforce CRM offshore software development business offshore software development company outsourcing software C++ application apps web java Cloud computing mobile app development Big Data Analytics web development custom mobile app development company J2ee cloud Big Data app development project management IT developers IT consulting and software development developer javascript website software development Evon Technologies Salesforce customization QA Offshore development India NodeJs Web app development Salesforce Cloud Services consultant Salesforce consulting Software development and testing Product Development testing Automation Offshore development programming Android development Web 3.0 Python data security Social Media Marketing Blockchain offshore Salesforce Lightning software development outsourcing Web application project management methodology Salesforce CRM Offshore software development services enterprise MVP Development Joomla developers Salesforce Mobile Development consulting QA and Testing business analysts Agile Development Agile product Development mobile EmployeeEngagement startups Salesforce cloud DevOps digital marketing services data Salesforce development Progressive Web Apps digital marketing services india iOS apps risk management language HTML5 development App Development Outsourcing project customer Virtual reality Real time data Higher Productivity cost digital tranformation consulting VR Apps sales Findnerd data protection app business management advantages Popular CMS Collaboration Android app development outsourcing WordPress