CALL US

  +91 8266041801

  +44 203 372 4609

  +1 408 454 6110

  evontech

Get Free Quote

How Deep Learning is Revolutionizing Healthcare and How Evon Can Help You Ride the Wave

  • Deep learning applications are changing the way patients receive healthcare. This blog gives insight into use cases of deep learning in healthcare, such as faster and accurate diagnosis, personalized treatment, drug discovery, to name a few

No longer pie in the sky - Smart systems that could actually think like humans and solve complicated problems will be all around us in the future not far away. Deep Learning, a subset of ML, has already exploded in popularity for its ability to help solve complex problems without human intervention. In this blog, I am going to discuss how deep learning is setting health sector for a complete makeover of every aspect of patients’ life and how Evon can help leverage deep learning algorithms (that imitate neural networks of the human brain) to push a life-saving idea in the healthcare market.

Use Cases of Deep Learning in Healthcare

  • Faster and accurate diagnosis/prognosis

A class of deep learning known as convolutional neural network (CNN) paves the way for medical imaging applications. CNN is trained in two phases to make accurate predictions: Forward phase and backward phase. In the former phase, the input is passed completely through the network, whereas the latter involves backpropagation of gradients and updating weights, meaning errors from the output are sent back to the input for correction.

CNN has five different layers:

  • Input layer
  • Convo layer (Convo + ReLU)
  • Pooling layer
  • Fully connected(FC) layer
  • Softmax/logistic layer
  • Output layer

CNN is now being increasingly used for computer vision to classify different objects in an input image and identify important features while analyzing images, such as MRI results or x-rays. In fact, the WBCD (Wisconsin Breast Cancer Diagnosis) dataset is now widely used for creating two classifiers that discriminate benign from malignant breast lumps with high accuracy.

A study published in the Annals of Oncology in 2018 also showed that a deep learning CNN identified skin cancer with 10 percent more accuracy than human diagnosticians.

One in ten patients die because of diagnostic errors, shows a study. Deep learning applications become a saviour here as they enable faster and accurate diagnosis by understanding the patterns of injuries and tumours, which leads to quick treatment and accurately estimate the prognosis.

For the sake of another example, a deep learning algorithm developed by Stanford researchers diagnoses pneumonia better than radiologists. The network is also capable of diagnosing 14 medical conditions. These life-saving solutions can also be built in the form of a deep learning custom mobile app development to help people who have to travel to far-flung places to get healthcare.

  • Drug Discovery 

Deep learning holds great potential for early-stage drug discovery and manufacturing. Next-generation sequencing, experimental design, toxicity, molecular representation, binding affinity and precision medicine are some deep learning R&D technologies that can help find alternative medications for multifactorial diseases.

High cost of drug discovery and spending 10-15 years to bring a new drug to the market has long been the nemesis of the pharma industry. Deep learning (that is believed to be the panacea of healthcare in the long run) can significantly reduce the time and cost of drug development. Deep learning models can process gigantic amounts of chemical data that is collected over many years in quick time and produce outcomes for drug development. Besides, deciding the efficacy of a new medicine becomes much easier. Deep learning algorithms can decipher from a patient’s physiological signals such as gait, breathing, mobility, behaviour, sleep, and heart rate to establish how a drug is affecting their body, and thus help make informed decisions. Healthcare professionals are counting big on deep learning to help discover drugs for global epidemics and incurable diseases such as Alzheimer's. 

  • Smart Health Records

Various traditional predictive modelling techniques are being used for dealing with potential predictor variables in a patient’s electronic health record (EHR) now. But they often lead to imprecise predictions and raise a false alarm for physicians, nurses, and other providers. The reason being that EHRs may have thousands of free-text notes from doctors, nurses, and other providers and predictive modelling techniques consider a limited number of commonly collected variables. This is where deep learning becomes a much bigger force - Deep learning approaches incorporate the entire EHR, leaving nothing behind, and produce accurate predictions for various health problems.

Deep learning models in EHR also reduce the burden of continuously reviewing and updating EHRs. With much lesser pressure of administrative tasks, doctors can spend more time with patients and greatly improve the quality of patient care. Natural Language Processing and deep learning combined are the way for smart EHRs.

  • Genome Biology for Personalized Medicine

Understanding the genes of a patient helps doctors provide personalized medicine. The human genome has over 3 billion base pairs. When we consider mutations, there are more than 50 million dimensions. Also add epigenetics and 20,000 gene expressions and transcriptions. However, making sense of this complex and humongous amount of data is not easy for today’s computer science. Deep learning is believed to make breakthroughs in genome biology by helping doctors understand which medicine will help a patient recuperate faster and what type of a disease a patient is likely to contract. IBM Watson Genomics is a good example to cite here as its effort to integrate cognitive computing with genome-based tumour sequencing is helping doctors make a fast diagnosis.

There are endless healthcare applications of deep learning. You can think of virtual nurses, robots performing surgeries, outbreak prediction and many others. However, to build any deep learning healthcare solution, you need a technology partner that has hands-on experience of using new technologies and right resources available at its disposal.

Evon, an offshore software development company in India, has the proven experience of applying deep learning to implement AI Bots for Poker and Rummy card games on Gamentio, a 3D casino games website and app. With more than a decade experience in helping businesses with latest and innovative technology solutions, Evon can help you too to push your deep learning solution for healthcare in the market. Evon’s business analysts and subject matter experts have an eye for detail and expertise in clearly defining requirements. Tell us what type of healthcare solution you want to build using deep learning neural networks like ANN, CNN, RNN and more, and we will explain to you how Evon can help you push a champion in the healthcare market.

So, what are you waiting for? Get in touch with us here.

What are the components of J2EE applications and E...
What is Salesforce Ecosystem and how Evon can help...

SEARCH BLOG

development Salesforce CRM offshore software development business offshore software development company apps java Cloud computing software outsourcing C++ web mobile app development Big Data Analytics web development cloud mobile app development company J2ee app development Big Data javascript custom IT developers IT consulting and software development application Salesforce customization NodeJs Project Management QA Offshore development India software development developer Offshore development Salesforce Cloud Services consultant Salesforce consulting Android development Web app development website Software development and testing testing Product Development Automation Salesforce Lightning Agile product Development project management methodology digital marketing services Salesforce CRM Progressive Web Apps digital marketing services india Offshore software development services iOS apps Social Media Marketing risk management Salesforce cloud Salesforce Mobile Development software development outsourcing Evon Technologies EmployeeEngagement enterprise Joomla developers QA and Testing business analysts Salesforce development MVP Development Python programming data security Agile Development startups Start-ups Offshore development company sales c++ language data protection India c++ programming QA services task management Project Manager Staff Augmentation salesforce apps customer time tracking project MVP software PHP development Resource Management project management methodologies Web designinng Big data and lead generation developers App Development Outsourcing Web application AppExchange advantages hiring salesforce implementation Higher Productivity

About Us

Evon is a Software Consultancy based in India. We are a 250+ people company. We primarily service clients who want to either completely outsource a new idea or are looking to build an offshore team

Recent Tweets

Evon Technologies

Want to build smart #IoTApplication with C++, Here are some of the main reasons for using C++ for building Smart… https://t.co/Sn2jlWY7mr

Evon Technologies

RT @antgrasso: 4 key opportunities for Service Providers in the medical device industry: - IoT - Cybersecurity - Supply Chain - Quality and…

Get in Touch

  +91 8266041801

  +44 203 372 4609

  +1 408 454 6110

  evontech

 This email address is being protected from spambots. You need JavaScript enabled to view it.

   A- 5, IT Park, Dehradun, Uttarakhand, India, PIN - 248001.

follow us on

×
We use cookies on our website to provide you with a more personalised digital experience and for analytics related to our website and other media. For more information, please review our Privacy Policy and Cookies Policy.